If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2=100=1999=x^2-100
We move all terms to the left:
1x^2-(100)=0
We add all the numbers together, and all the variables
x^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| 170=p(1+4.8*5/12) | | j^2+100=0 | | 14p+21/7p=0 | | 2(3c)2-5(3c)=7 | | 25^2-4s-2=0 | | 20/7p=20 | | x(x)+3x=4 | | H(t)=20t-5t2 | | 2x^2+6x+9=13 | | 5/3x+3=6 | | 500x^2-1000x+48=0 | | p−17/2=2p–7 | | 3^2x+36(3^x)+243=0 | | X+12=33,x | | y=5E-07*8185^2+0.0044*8185+5.2533 | | 2x^2-5x=x^2+2x-1 | | (2)5(x+43)=2(3x+4) | | 4x*130/100+5x*130/100=11.7x | | X+(x-45)=120 | | p(p)-21=0 | | -3+5x=-19 | | a2a2aa=360 | | (2m-1)(m+3)=3 | | (X+iý)(2+i)=3-i | | 3x(2x+1)=3x-12 | | 5x-2x=48 | | 4*(3x+5)-3*(4-2x)=-28 | | 15*(5x+5)=15 | | 10x+24=29x+15 | | 8p-4/3p=2 | | 2y+2(90+-1y)=180 | | (3x+5)-(10x-7)=180 |